jueves, 19 de noviembre de 2015

ANTECEDENTES DE LAS COMPUTADORAS

  • Benemérita Universidad Autónoma  De Puebla
  • Preparatoria Regional Enrique Cabrera Barroso 
  • Alumno: Jesús Ruben Rosales Reynoso
  • Profesor: Gelacio Salas Ortega                    
                      ¿Qué es una Computadora? 
Es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Y Es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, rapidez y de acuerdo a lo indicado por un usuario.   
          
              LA EVOLUCIÓN DE LA COMPUTADORA                                                                   
               

                                       HISTORIA    
La computadora fue una de las primeras y principales maquinas que hicieron evolucionar la vida de los seres humanos. Fue creada como La primera máquina, que fue calcular la mecánica, de un precursor de la computadora digital, fue inventada en 1642 por el matemático francés Blaise Pascal .Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. 



Y fue uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. En 1670: el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar. 


El inventor francés Joseph Marie Jacquard: Diseño un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos.
                             


Durante la década de 1880: El estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
             

En 1941: resultado de la segunda Guerra Mundial, la computadora Z3, construido por los alemanes, tenía como principal función la codificación de mensajes. Sin embargo fue destruida en Berlín dejándonos muy poca información sobre esta computadora. 


En 1943: Los alemanes Y los ingleses también fueron en búsqueda de tecnologías para descifrar códigos secretos construyendo entonces el Colossus (Servicio de Inteligencia Británico). Poseyendo dimensiones gigantescas, el Colossus funcionaba por medio de válvulas llegando a procesar cerca de 5 mil caracteres por segundo. Fue inventado por Turing.
En 1944: Mark I (Howard Aiken) fue la primera computadora electromecánica construida. Bastante diferente de las computadoras actuales, Mark I medía 18 metros de largo, dos metros de ancho y pesaba 70 toneladas. Estaba constituida por 7 millones de piezas móviles y su cableado alcanzaba los 800 Km. Con la llegada de las computadoras electrónicas Mark I fue inmediatamente sustituido.
                                                       
En 1945: John Von Neumann, ingeniero matemático húngaro y naturalizado americano desarrolló un proyecto de computadora basado en la lógica, con almacenamiento electrónico de la información y de datos de programación. La computadora procesaría los datos de acuerdo con las necesidades del usuario, o sea, las instrucciones no vendrían predeterminadas. Más tarde esa computadora fue construida recibiendo el nombre de Edvac.  El primer BUG de computadora fue relatado por la Oficial Naval y Matemática Grace Murray Hopper, el BUG era una polilla dentro de la computadora, la cualhizo que la computadora tuviera un desperfecto en sus cálculos. 
En 1946: John W. Mauchly y J. Prester Eckert Jr., junto con científicos de la Universidad de la Pensilvania, construyeron la primera computadora electrónica, conocido como ENIAC (Electronic Numerical Integrator and Calculador), tenía aproximadamente 18 mil válvulas, pesaba 30 toneladas y llegaba a consumir 150 KW. En contrapartida superaba mil veces la velocidad de las otras computadoras, llegando a realizar 5 mil operaciones por segundo.   En 1947: Presper Eckert y John Mauchly, pioneros en la historia de la computadora, fundaron la Cía. Eckert-Mauchly Computer Corporation, con el objetivo de fabricar máquinas basadas en sus experiencias como el ENIAC y el EDVAC. 

En 1948: La primera computadora comercial es inventada, llamada UNIVAC. John Bardeen, Walter Brattain y William Shockley de Bell Labs patentarían el primer transistor.  


En 1953: La Interrelación Business Machines IBM lanza su primera computadora digital, la IBM 701. Como primera computadora de la marca comercializada, fueron vendidas 19 máquinas en tres años. 
En 1955: Fue anunciado por los laboratorios AT&T Bell, la Tradic fue la primera computadora transistorizada, teniendo aproximadamente 800 transistores en el lugar de los antiguos tubos de vacío, lo que le permitía trabajar con menos de 100 Watts de consumo de energía.
En 1958: Jack Kilby creó el primer circuito integrado en Texas Instruments para probar que resistores y capacitores podían existir en un mismo pedazo de material semiconductor. Su circuito era formado por una astilla de germanio y cinco componentes conectados por cables. La NEC de Japón construyó la primera computadora electrónica, el NEAC. IBM 7000

En 1959: la serie 7000 de mainframes IBM fue la primera de las computadoras 
transistorizadas de la compañía. En el tope de la línea de computadoras estaba el 7030, también conocido como STRETCH. Siete computadoras, las cuales usaban palabras de 64 bits y otras innovaciones, fueron vendidas a laboratorios nacionales y otros usuarios científicos. L.R. Johnson fue el primero a usar el término "arquitectura" para describir el STRETCH.  

En 1960: Fue diseñado el Dataphone, el primer módem comercial,
específicamente para convertir señales digitales de computadora en señales
analógicas para la transmisión a través de sus redes de larga distancia. Un equipo
liderado por varios fabricantes de computadoras y el Pentágono desarrollaron el
COBOL, Common Business Oriented Language, el primer lenguaje volcado hacia
el uso en programación de computadoras. IBM crea la primera fábrica masiva de
transistores en Nueva York. 
En 1962: Los estudiantes del MIT Slug Russel, Shag Graetz y Alan Kotok
escribieron el SpaceWar!, considerado el primer juego interactivo de
computadora. El juego ofrecía gráficos interactivos que inspiraron los vídeos
games futuros. 

En 1963: ASCII - American Standard Code Information Interchange - permitió que máquinas de diferentes fabricantes intercambiaran datos entre sí.  La Digital Equipament vende la primera mini computadora.  Douglas Engelbart recibe la patente del primer mouse para computadora.  CDC 6600.

En 1964: Thomas Kurtz y John Kemeny, profesores del DartMouth College, crearon el BASIC, un lenguaje de programación de fácil aprendizaje.  La computadora CDC 6600, diseñada por Seymour Cray, ejecutaba hasta 3 millones de operaciones por segundo y tenía velocidad de procesamiento tres
veces mayor que la de su competidora. Fue la más rápida hasta la llegada de su sucesora, en 1968, el CDC 7600. 
En 1965: La DEC introdujo el PDP-8, la primera mini computadora comercializada con éxito. Era vendida a US$ 18 mil. HP 2115 
En 1966: Hewlett-Packard entró en el negocio de computadora para uso general
con su HP-2115 ofreciendo un alto poder de procesamiento encontrado solamente en computadoras de gran porte. Ella soportaba una gran variedad de lenguajes, entre ellas BASIC, ALGOL y FORTRAN  IBM presenta el primer disco de almacenamiento, el IBM RAMAC 305.Tenía la capacidad de 5 MB. 
En 1968: Data General Corporación, compania creada por un grupo de ingenieros
que dejaron DEC, introdujeron la computadora NOVA. Con 32 KB de memoria,
era vendida a US$ 8 mil. La arquitectura simple del conjunto de instrucciones 
inspiraron la Apple I, de Steve Wozniak, ocho años más tarde. 
Robert Noyce, Andy Grove y Gordon Moore fundan Intel.
En 1969: Programadores de los laboratorios AT&T Bell, Ken Thompson y Denis
Richie desarrollan el UNIX, primer sistema operativo que podría ser aplicado en
cualquier máquina. Ese año, el ejército americano conectó las máquinas de
Arpanet, formando la red que originaría internet. 


En 1971: La Kenbak-1 fue la primera computadora personal anunciada por un científico americano, por 750 dólares.   La primera propaganda de un microprocesador, el Intel 4004.  Un equipo de IBM conducida por Alan Shugart inventó el disco flexible de 8". 



En 1973: Robert Metcalfe diseño Ethernet, método para la conexión en red, en el

centro de investigación de Xerox en Palo Alto, California. 
El TV Typewriter, desarrollado por Don Lancaster, proyectó el primer display de
información alfanumérico en un estudio de TV común. 
La Micral fue la primera computadora comercial basada en un microprocesador, el
Intel 8008. Scelbi 8H. 
En 1974: Los investigadores de Xerox, en el centro de investigación en Palo Alto,
proyectaron el ALTO, la primera estación de trabajo con una entrada interna para 
mouse.  Intel y Zilog introdujeron nuevos microprocesadores. David Silver, del MIT, proyectó el brazo de plata, un brazo mecánico para hacer ensamble de pequeñas piezas por medio del feedback de los sensores de toque y de presión presentes en el robot. Scelbi anunció la computadora 8H, la primera computadora comercial anunciada en Estados Unidos basada en el microprocesador Intel 8008.
En 1975: La edición de enero del The Popular Electrónicos anunció la
computadora Altair 8800, basada en un microprocesador Intel 8080. 
Telenet, la primera red comercial, equivalente a ARPANET, fue instalada. 
El prototipo del módulo de indicador visual (VDM), proyectado por Lee
Felsenstein, marcó la primera ejecución de un indicador de video alfanumérico
memory-mapped para las computadoras personales. 
La Tandem Computadoras, lanzó la Tandem-16, la primer computadora faulttolerant para transacción on-line  de procesos.  Es lanzada también la Imsai 8080 producida por IMS Associates, una computadora hecha con la misma estructura de BUS de la Altair 8800. 

En  1976: Steve Wozniak proyectó la Apple I, la primer computadora singleboard. Gary Kildall desarrolló el CP/M, un sistema operativo para computadoras personales. 
      
En 1979: el microprocesador 68000, de Motorola, se mostró mucho más veloz que los microprocesadores de la época. Los programadores Daniel Bricklin y Robert Frankston, de la Universidad Harvard, desarrollaron el VisiCalc, programa que transformó a las computadoras comerciales en computadoras personales.  Carver Mead, profesor del Instituto de Tecnología de California, y Lynn Conway, científica de Xerox Corporation, escribieron un manual sobre el proyecto de un chip, llamado "Introduction to VLSI Systems." 
En 1980: Seagate Technology desarrolló el primer Hard Disk Drive para micro computadoras.  El disco almacenó 5 megabytes de datos, cinco veces más que la mayoría de los discos comunes de la época. Desarrollado por Philips, el primer disco óptico de almacenamiento de datos tenía una capacidad de almacenamiento 60 veces mayor que un disco flexible de 5 ".  John Shoch, del centro de investigación de Xerox, en Palo Alto, inventó la computadora "Worm" la cual traía un programa de alto desempeño para la búsqueda de información. 
En 1982: Mitch Kapor desarrolló el Lotus 1-2-3, software desarrollado para la  computadora personal de IBM. 


En 1983: La primera computadora personal con interfaz gráfica es desarrollada por Apple.  Introdujo su primera computadora personal (PC), que usaba el mismo software que la PC de IBM.  Microsoft anunció el procesador de textos Word, llamado anteriormente Multi-Tool Word. Además anunció el lanzamiento del sistema operativo Windows.  IBM PC AT. 
En 1987: IBM PS/2 Motorola desarrolló el microprocesador 68030.  IBM introdujo al mercado las computadoras PS/2, fabricadas con drives de 3”. William Atkinson, ingeniero de Apple, proyectó HyperCard, un software quesimplificaba el desarrollo de aplicaciones domésticas.  
En 1989: Intel lanzó el microprocesador 80486 y el i860 chip RISC/coprocesador, cada uno contiendo más de 1 millón de transistores.  Motorola anunció el microprocesador 68040, con aproximadamente 1,2 millón transistores.  Maxis lanzó el SimCity, un juego de video game que utilizaba una serie de simuladores. La ciudad era usada frecuentemente en ambientes educativos.  El concepto de la realidad virtual fue el tema principal en la convención de Siggraph's, realizada en Boston, Massachusetts.
En 1997: el Netscape Navigator 2.0 es lanzado.Fue el primer navegador (browser) 

con soporte para Java script. Intel lanza el procesador Pentium de 150,166 & 200 MHz Ellos tiene el  equivalente a 3.3 millones de transistores.  La IBM Deep Blue, fue la primera computadora en ganarle al campeón mundial de ajedrez Gary Kasparov en un juego. 
En 1998: Es lanzado el procesador Pentium II 333 MHz, más rapido que el

antiguo.  Microsoft lanza el Windows 98.   En 1999: Linux es lanzado. Linux 
En el 2001: Es lanzado el Linux Kernel.  Se lanza al mercado de computadoras el Windows XP.  
En el 2002: fue el Lanzamiento del navegador web Mozilla Firefox, llamado en un primer momento Phoenix


En el 2005: Los usuarios de Internet con conexión de banda ancha superan ausuarios de internet con conexión vía módem en la mayoría de paísedesarrollados. 
Se lanza el programa Google Earth. Lanzamiento de Windows XP Media Center Edición Puesta en funcionamiento del supercomputador MareNostrum en el BSC.
Creación de YouTube. En  el 2006: fue el Lanzamiento del sistema operativo de Microsoft Windows Vista Entra en servicio el supercomputador Magerit perteneciente al CeSViMa. En el 2007: La empresa Dell lanza al mercado la primera computadora portátil (laptop) con la distribución Linux Ubuntu preinstalada.  La empresa de Steve Jobs, Apple, lanza al mercado la nueva versión el Mac OS
X Leopard 10.5  En el 2008: Apple lanza al mercado la MacBook Air la cual, al parecer, es la laptop más delgada del mundo en ese momento. 
Apple lanza el móvil más revolucionario de la historia en toda Europa y América, el iPhone 3G .  Google, contrarresta a Apple lanzando el G1 con su nuevo sistema Android para móviles.  Lanzamiento del navegador Google Chrome. Lanzamiento de KDE 4.0.En el 2009  Debían GNU/Linux 5.0 KDE 4.2 RC Apple, lanza al mercado la nueva versión el Mac OS X Snow Leopard 10.6 El 22 de octubre se lanza el sucesor de Windows Vista, el Windows 7.
En el 2010: Se espera el lanzamiento de Google Chrome OS, un sistema  operativo creado por la empresa Google y basado en Linux. IBM crea un procesador de grafeno con una frecuencia efectiva de 100 GHz. Se espera el lanzamiento de USB versión 3.0, que representaría un avance en la  velocidad de transmisión de datos entre el dispositivo conectado y la computadora. Qualcomm lanza el primer procesador móvil doble núcleo a 1,5 GHz. 

                                 GENERACIONES DE LAS COMPUTADORAS
El desarrollo de la moderna computación comienza en el momento en que se crea la primera computadora en forma. El descubrimiento de los nuevos dispositivos electrónicos, los grandes avances de la programación y el acelerado desarrollo de los nuevos sistemas operativos, marcaron fechas que permiten identificar y clasificar a las computadoras de acuerdo con sus componentes y con su capacidad de procesamiento, agrupándolas por generaciones. Hay quienes ubican a la primera generación a partir de 1937 o antes, relacionándola con los primeros trabajos del Dr. Konrad Zuse y del Dr. Howard H. Aiken (1900-1973); otros consideran 1951 como el año de arranque de la computación, por coincidencia con la aparición de la primera computadora comercial, la UNIVAC. Por estos motivos, las fechas en que se dieron los grandes cambios tecnológicos son los parámetros que determinan el comienzo y el fin de cada etapa.

                            PRIMERA GENERACIÓN 1940-1952 
La primera generación de computadoras abarca desde el año 1940 hasta el año 1952, época en que la tecnología electrónica era a base de bulbos o tubos de vacío, y la comunicación era en términos de nivel más bajo que puede existir, que se conoce como lenguaje de máquina.
Características:

  • Estaban construidas con electrónica de válvulas.
  • Se programaban en lenguaje de la máquina.
Un programa es un conjunto de instrucciones para que la máquina efectúe alguna tarea, y el lenguaje más simple en el que puede especificarse un programa se llama lenguaje de máquina (porque el programa debe escribirse mediante algún conjunto de códigos binarios).
La primera generación de computadoras y sus antecesores, se describen en la siguiente lista de los principales modelos de que constó:

  • 1946 ENIAC. Primera computadora digital electrónica en la historia. No fue un modelo de producción, sino una máquina experimental. Tampoco era programable en el sentido actual. Se trataba de un enorme aparato que ocupaba todo un sótano en la universidad. Construida con 18.000 tubos de vacío, consumía varios KW de potencia eléctrica y pesaba algunas toneladas. Era capaz de efectuar cinco mil sumas por segundo. Fue hecha por un equipo de ingenieros y científicos encabezados por los doctores John W. Mauchly y J. Presper Eckert en la universidad de Pensilvania, en los Estados Unidos.
  • 1949 EDVAC. Segunda computadora programable. También fue un prototipo de laboratorio, pero ya incluía en su diseño las ideas centrales que conforman las computadoras actuales.
  • 1953 IBM 701. Para introducir los datos, estos equipos empleaban tarjetas perforadas, que habían sido inventadas en los años de la revolución industrial (finales del siglo XVIII) por el francés Joseph Marie Jacquard y perfeccionadas por el estadounidense Herman Hollerith en 1890. La IBM 701 fue la primera de una larga serie de computadoras de esta compañía, que luego se convertiría en la número uno, por su volumen de ventas.
  • 1954 - IBM continuó con otros modelos, que incorporaban un mecanismo de almacenamiento masivo llamado tambor magnético, que con los años evolucionaría y se convertiría en el disco magnético.
  • 1955 - Zuse Z22. La primera computadora de Konrad Zuse aprovechando los tubos de vacío.
EL TUBO DE VACIOS:La era de la computación moderna empezó con una ráfaga de desarrollo antes y durante la Segunda Guerra Mundial, como circuitos electrónicos, relés, condensadores y tubos de vacío que reemplazaron los equivalentes mecánicos y los cálculos digitales reemplazaron los cálculos analógicos.
Las computadoras que se diseñaron y construyeron entonces se denominan a veces "primera generación" de computadoras. La primera generación de computadoras eran usualmente construidas a mano usando circuitos que contenían relés y tubos de vacío, y a menudo usaron tarjetas perforadas (punched cards) o cinta de papel perforado (punched paper tape) para la entrada de datos [input] y como medio de almacenamiento principal (no volátil). El almacenamiento temporal fue proporcionado por las líneas de retraso acústicas (que usa la propagación de tiempo de sonido en un medio tal como alambre para almacenar datos) o por los tubos de William (que usan la habilidad de un tubo de televisión para guardar y recuperar datos).
A lo largo de 1943, la memoria de núcleo magnético estaba desplazando rápidamente a la mayoría de las otras formas de almacenamiento temporal, y dominó en este campo a mediados de la década de 1970.
En 1936 Konrad Zuse empezó la construcción de la primera serie Z, calculadoras que ofrecen memoria (inicialmente limitada) y programabilidad. Las Zuses puramente mecánicas, pero ya binarias, la Z1 terminada en 1938 nunca funcionó fiablemente debido a los problemas con la precisión de partes. En 1937, Claude Shannon hizo su tesis de máster en MIT que implementó álgebra booleana usando relés electrónicos e interruptores por primera vez en la historia. Titulada "Un Análisis Simbólico de Circuitos de Relés e Interruptores" (A Symbolic Analysis of Relay and Switching Circuits), la tesis de Shannon, esencialmente, fundó el diseño de circuitos digitales prácticos.
La máquina subsecuente de Zuse, la Z3, fue terminada en 1941. Estaba basada en relés de teléfono y trabajó satisfactoriamente. Así, la Z3 fue la primera computadora funcional controlada mediante programas. En muchas de sus características era bastante similar a las máquinas modernas, abriendo numerosos avances, tales como el uso de la aritmética binaria y números de coma flotante. El duro trabajo de reemplazar el sistema decimal (utilizado en el primer diseño de Charles Babbage) por el sistema binario, más simple, significó que las máquinas de Zuse fuesen más fáciles de construir y potencialmente más fiables, dadas las tecnologías disponibles en ese momento.
Esto es a veces visto como la principal razón por la que Zuse tuvo éxito donde Babbage falló; sin embargo, aunque la mayoría de las máquinas de propósito general de la actualidad continúan ejecutando instrucciones binarias, la aritmética decimal es aún esencial para aplicaciones comerciales, financieras, científicas y de entretenimiento, y el hardware de coma flotante decimal está siendo agregado en los dispositivos actuales (el sistema binario continúa siendo usado para direccionamiento en casi todas las máquinas) como un apoyo al hardware binario.
Se hicieron programas para las Z3 en cintas perforadas. Los saltos condicionales eran extraños, pero desde los 1990s los puristas teóricos decían que la Z3 era aún una computadora universal (ignorando sus limitaciones de tamaño de almacenamiento físicas). En dos patentes de 1937, Konrad Zuse también anticipó que las instrucciones de máquina podían ser almacenadas en el mismo tipo de almacenamiento utilizado por los datos –la clave de la visión que fue conocida como la arquitectura de von Neumann y fue la primera implementada en el diseño Británico EDSAC (1949) más tarde–.
Zuse también diseño el primer lenguaje de programación de alto nivel "Plankalkül" en 1945, aunque nunca se publicó formalmente hasta 1971, y fue implementado la primera vez en el 2000 por la Universidad de Berlín, cinco años después de la muerte de Zuse.
Zuse sufrió retrocesos dramáticos y perdió muchos años durante la Segunda Guerra Mundial cuando los bombarderos británicos o estadounidenses destruyeron sus primeras máquinas. Al parecer su trabajo permaneció largamente desconocido para los ingenieros del Reino Unido y de los Estados Unidos. Aún así, IBM era consciente de esto y financió su compañía a inicios de la post-guerra en 1946, para obtener derechos sobre las patentes de Zuse.
En 1940, fue completada la Calculadora de Número Complejo, una calculadora para aritmética compleja basada en relés. Fue la primera máquina que siempre se usó remotamente encima de una línea telefónica. En 1938, John Vincent Atanasoff y Clifford E. Berry de la Universidad del Estado de Iowa desarrollaron la Atanasoff Berry Computer (ABC) una computadora de propósito especial para resolver sistemas de ecuaciones lineales, y que emplearon condensadores montados mecánicamente en un tambor rotatorio para memoria. La máquina ABC no era programable, aunque se considera una computadora en el sentido moderno en varios otros aspectos.
Durante la Segunda Guerra Mundial, los británicos hicieron esfuerzos significativos en Bletchley Park para descifrar las comunicaciones militares alemanas. El sistema cypher alemán (Enigma), fue atacado con la ayuda con la finalidad de construir bombas (diseñadas después de las bombas electromecánicas programables) que ayudaron a encontrar posibles llaves Enigmas después de otras técnicas tenían estrechadas bajo las posibilidades. Los alemanes también desarrollaron una serie de sistemas cypher (llamadas Fish cyphers por los británicos y Lorenz cypers por los alemanes) que eran bastante diferentes del Enigma. Como parte de un ataque contra estos, el profesor Max Newman y sus colegas (incluyendo Alan Turing) construyeron el Colossus. El Mk I Colossus fue construido en un plazo muy breve por Tommy Flowers en la Post Office Research Station en Dollis Hill en Londres y enviada a Bletchley Park.
El Colossus fue el primer dispositivo de cómputo totalmente electrónico. El Colossus usó solo tubos de vacío y no tenía relés. Tenía entrada para cinta de papel (paper-tape) y fue capaz de hacer bifurcaciones condicionales. Se construyeron nueve Mk II Colossi (la Mk I se convirtió a una Mk II haciendo diez máquinas en total). Los detalles de su existencia, diseño, y uso se mantuvieron en secreto hasta los años 1970. Se dice que Winston Churchill había emitido personalmente una orden para su destrucción en pedazos no más grandes que la mano de un hombre. Debido a este secreto el Colossi no se ha incluido en muchas historias de la computación. Una copia reconstruida de una de las máquinas Colossus esta ahora expuesta en Bletchley Park.
El trabajo de preguerra de Turing ejerció una gran influencia en la ciencia de la computación teórica, y después de la guerra, diseñó, construyó y programó algunas de las primeras computadoras en el Laboratorio Nacional de Física y en la Universidad de Mánchester. Su trabajo de 1936 incluyó una reformulación de los resultados de Kurt Gödel en 1931 así como una descripción de la que ahora es conocida como la máquina de Turing, un dispositivo puramente teórico para formalizar la noción de la ejecución de algoritmos, reemplaza al lenguaje universal, más embarazoso, de Gödel basado en aritmética. Las computadoras modernas son Turing-integrada (capacidad de ejecución de algoritmo equivalente a una máquina de Turing universal), salvo su memoria finita. Este limitado tipo de Turing-integrados es a veces visto como una capacidad umbral separando las computadoras de propósito general de sus predecesores de propósito especial.
George Stibitz y sus colegas en los Laboratorios Bell de la ciudad de Nueva York produjeron algunas computadoras basadas en relés a finales de los años 1930 y a principios de los años 1940, pero se preocuparon más de los problemas de control del sistema de teléfono, no en computación. Sus esfuerzos, sin embargo, fueron un claro antecedente para otra máquina electromecánica americana.
La Harvard Mark I (oficialmente llamada Automatic Sequence Controlled Calculator) fue una computadora electro-mecánica de propósito general construida con financiación de IBM y con asistencia de algún personal de IBM bajo la dirección del matemático Howard Aiken de Harvard. Su diseño fue influenciado por la Máquina Analítica. Fue una máquina decimal que utilizó ruedas de almacenamiento e interruptores rotatorios además de los relés electromagnéticos.
Se programaba mediante cinta de papel perforado, y contenía varias calculadoras trabajando en paralelo. Más adelante los modelos contendrían varios lectores de cintas de papel y la máquina podía cambiar entre lectores basados en una condición. No obstante, esto no hace mucho la máquina Turing-integrada. El desarrollo empezó en 1939 en los laboratorios de Endicott de IBM; la Mark I se llevó a la Universidad de Harvard para comenzar a funcionar en mayo de 1944.

 ENIAC:
La construcción estadounidense ENIAC (Electronic Numerical Integrator and Computer), a menudo llamada la primera computadora electrónica de propósito general, públicamente validó el uso de elementos electrónicos para computación a larga escala. Esto fue crucial para el desarrollo de la computación moderna, inicialmente debido a la ventaja de su gran velocidad, pero últimamente debido al potencial para la DARINKA
Construida bajo la dirección de John Mauchly y J. Presper Eckert, era mil veces más rápida que sus contemporáneas. El desarrollo y construcción de la ENIAC comenzó en 1941 siendo completamente operativa hacia finales de 1945. Cuando su diseño fue propuesto, muchos investigadores creyeron que las miles de válvulas delicadas (tubos de vacío) se quemarían a menudo, lo que implicaría que la ENIAC estuviese muy frecuentemente en reparación. Era, sin embargo, capaz de hacer más de 100.000 cálculos simples por segundo y eso durante unas horas que era el tiempo entre fallos de las válvulas.
Para programar la ENIAC, sin embargo, se debía realambrar por lo que algunos dicen que eso ni siquiera se puede calificar como programación, pues cualquier tipo de reconstrucción de una computadora se debería considerar como programación. Varios años después, sin embargo, fue posible ejecutar programas almacenados en la memoria de la tabla de función.
A todas las máquinas de esta época les faltó lo que se conocería como la arquitectura de Eckert-Mauchly: sus programas no se guardaron en el mismo "espacio" de memoria como los datos y así los programas no pudieron ser manipulados como datos.
La primera máquinas Eckert-Mauchly fue la Manchester Baby o Small-Scale Experimental Machine, construida en la Universidad de Mánchester en 1948; esta fue seguida en 1949 por la computadora Manchester Mark I que funcionó como un sistema completo utilizando el tubo de William para memoria, y también introdujo registros de índices. El otro contendiente para el título "primera computadora digital de programa almacenado" fue EDSAC, diseñada y construida en la Universidad de Cambridge.
Estuvo operativa menos de un año después de la Manchester "Baby" y era capaz de resolver problemas reales. La EDSAC fue realmente inspirada por los planes para la EDVAC, el sucesor de la ENIAC; estos planes ya estaban en lugar por el tiempo la ENIAC fue exitosamente operacional. A diferencia la ENIAC, que utilizó procesamiento paralelo, la EDVAC usó una sola unidad de procesamiento. Este diseño era más simple y fue el primero en ser implementado en cada onda teniendo éxito de miniaturización, e incrementó la fiabilidad. Algunos ven la Manchester Mark I/EDSAC/EDVAC como las "Evas" de que casi todas las computadoras actuales que derivan de su arquitectura.
La primera computadora programable en la Europa continental fue creada por un equipo de científicos bajo la dirección de Segrey Alekseevich Lebedev del Institute of Electrotechnology en Kiev, Unión Soviética (ahora Ucrania). La computadora MESM (Small Electronic Calculating Machine (МЭСМ)) fue operacional en 1950. Tenía aproximadamente 6000 tubos de vacío y consumía 25 kW. Podía realizar aproximadamente 3000 operaciones por segundo.
La máquina de la Universidad de Mánchester se convirtió en el prototipo para la Ferranti Mark I. La primera máquina Ferranti Mark I fue entregada a la Universidad en febrero de 1951 y por lo menos otras nueve se vendieron entre 1951 y 1957.

UNIVAC 1:

En junio de 1951, la UNIVAC I [Universal Automatic Computer] se entregó a la Oficina del Censo estadounidense. Aunque fabricada por la Remington Rand, la máquina era erróneamente llamada la "IBM UNIVAC". La Remington Rand eventualmente vendió 46 máquinas a más de un millón de dólares cada una. La UNIVAC fue la primera computadora "producida en masa"; todas las predecesoras habían sido "una fuera de" las unidades. Usaba 5200 tubos de vacío y consumía 125 kW. Utilizó una línea de retraso de mercurio capaz de almacenar 1000 palabras de 11 dígitos decimales más la señal (72-bit de palabras) para memoria. En contraste con las primeras máquinas no usó un sistema de tarjetas perforadas, sino una entrada de cinta de metal.
En 1949, la Remington Rand había demostrado el primer prototipo de la 409, una calculadora de tarjeta perforada de tarjeta enchufada programada. Esta fue la primera instalada, en la Reneuve Service facility en Baltimore, en 1952. La 409 evolucionó para volverse la computadora Univac 60 y 120 en 1953.

LEO: 
En noviembre de 1952, la compañía J. Lyons and Co. (relacionada con la industria de los alimentos) desarrolló la primera computadora de Inglaterra la LEO (Lyons Electronic Office), esta también fue la primera computadora en resolver problemas de negocios. La computadora contenía la misma compañía. Wikipedia no sirve ;) 

 Las computadoras de esta generación se caracterizaron por estar integradas de relevadores (relés) electromecánicos como la MARK I , o de tubos de vacío como la ENIAC. Eran de un tamaño tan grande que ocupaban espaciosos salones en las universidades donde fueron construidas, por lo que recibieron el nombre de macrocomputadoras. Su capacidad de almacenamiento en la memoria era muy reducida como en el caso de la ENIAC, que almacenaba 1 kB (un kilobyte o 1024 bytes). Se considera 1946 como el inicio de esta generación, porque es a partir de ese año cuando comenzaron a operar este tipo de computadoras. 
 Mientras tanto, el ejército norteamericano colaboraba con la Universidad de Pensilvania en la construcción de la computadora ENIAC (Electronic Numerical Integrator and Calculator), que incluía aproximadamente 18,000 tubos de vacío.

Fue terminada en 1946 y su velocidad de procesamiento permitía efectuar alrededor de 500 multiplicaciones por segundo. Antes de terminar la computadora ENIAC, ya se trabajaba en la EDVAC (Electronic Discrete Variable Automatic Computer).
 Además de ser binaria, la EDVAC incluyó el primer programa diseñado para ser almacenado en una memoria. Esta arquitectura constituyó un nuevo estándar, que se conserva hasta nuestros días. En este proyecto, además de John Presper Eckert (1919-1995) y John William Mauchly (1907-1980), participó el gran matemático John von Neumann (1903-1957). Otro desarrollo contemporáneo (1959) fue la EDSAC (Electronic Delay Storage Automatic Calculator), que ya incorporaba a gran escala las ideas sobre almacenamiento de programas en la memoria de la computadora del Dr. John von Neumann, científico estadounidense originario de Hungría, quien era un convencido de que la computadora era la solución para el desarrollo de teoremas matemáticos complejos que aún no habían tenido solución. Fue construida por Maurice Wilkes y su equipo, en la Universidad de Cambridge en Inglaterra.
En 1951 J. Presper Eckert y John Mauchly desarrollan la UNIVAC (Universal Automatic Computer). Trabajaron juntos en muchos proyectos, como la ENIAC, la EDVAC y la BINAC, pero el éxito comercial vino con la UNIVAC (Figura 4), de la cual se vendieron 46 unidades. Fue construida por la división UNIVAC de Remington Rand, empresa sucesora de la Eckert-Mauchly Computer Corporation, que fue comprada por Remington Rand (1927–1955) en 1951. La cantidad de condensadores, resistencias y válvulas de vacío, propiciaba un consumo excesivo de energía eléctrica, por lo que se calentaban demasiado. Esto obligó a incluir en las salas de computación costosos sistemas de enfriamiento. La entrada de datos a la computadora se realizaba por medio de tarjetas perforadas y la programación solamente se desarrollaba en lenguaje de máquina o binario. El costo de construir máquinas era realmente exorbitante, y comparado con el rendimiento resultaban inaccesibles. 

               SEGUNDA GENERACIÓN 1953-1963
La segunda generación de las computadoras reemplazó las válvulas de vacío por los transistores. Por eso, las computadoras de la segunda generación son más pequeñas y consumen menos electricidad que las de la anterior. La forma de comunicación con estas nuevas computadoras es mediante lenguajes más avanzados que el lenguaje de máquina, los cuales reciben el nombre de “lenguajes de alto nivel” o lenguajes de programación.
Las características más relevantes de las computadoras de la segunda generación son:

  • Estaban construidas con la electrónica de transistores
  • Se programaban con lenguajes de alto nivel

  • 1951, Maurice Wilkes inventa la microprogramación, que simplifica mucho el desarrollo de las CPU pero esta microprogramación también fue cambiada más tarde por el computador alemán Bastian Shuantiger

  • 1956, IBM vendió por un valor de 1.230.000 dólares su primer sistema de disco magnético, el RAMAC (Random Access Method of Accounting and Control). Usaba 50 discos de metal de 61 cm, con 100 pistas por lado. Podía guardar 5 megabytes de datos, con un coste de 10.000$ por megabyte.

  • El primer lenguaje de programación de propósito general de alto-nivel, FORTRAN, también estaba desarrollándose en IBM alrededor de este tiempo. (El diseño de lenguaje de alto-nivel Plankalkül de 1945 de Konrad Zuse no se implementó en ese momento).

  • 1959, IBM envió el mainframe IBM 1401 basado en transistor, que utilizaba tarjetas perforadas. Demostró ser una computadora de propósito general y 12.000 unidades fueron vendidas, haciéndola la máquina más exitosa en la historia de la computación. Tenía una memoria de núcleo magnético de 4.000 caracteres (después se extendió a 16.000 caracteres). Muchos aspectos de sus diseños estaban basados en el deseo de reemplazar el uso de tarjetas perforadas, que eran muy usadas desde los años 1920 hasta principios de los '70.

  • 1960, IBM lanzó el mainframe IBM 1620 basada en transistores, originalmente con solo una cinta de papel perforado, pero pronto se actualizó a tarjetas perforadas. Probó ser una computadora científica popular y se vendieron aproximadamente 2.000 unidades. Utilizaba una memoria de núcleo magnético de más de 60.000 dígitos decimales.

  • 1962, Se desarrolla el primer juego de ordenador, llamado Spacewar!.1 2

  • DEC lanzó el PDP-1, su primera máquina orientada al uso por personal técnico en laboratorios y para la investigación.

  • 1964, IBM anunció la serie 360, que fue la primera familia de computadoras que podía correr el mismo software en diferentes combinaciones de velocidad, capacidad y precio. También abrió el uso comercial de microprogramas, y un juego de instrucciones extendidas para procesar muchos tipos de datos, no solo aritmética. Además, se unificó la línea de producto de IBM, que previamente a este tiempo tenía dos líneas separadas, una línea de productos “comerciales” y una línea “científica”. El software proporcionado con el System/350 también incluyó mayores avances, incluyendo multi-programación disponible comercialmente, nuevos lenguajes de programación, e independencia de programas de dispositivos de entrada/salida. Más de 14.000 System/360 habían sido entregadas en 1968.
En la segunda generación de computadoras, la característica principal es la inclusión de transistores. Siguen dominando los sistemas de tarjeta o cinta perforada para la entrada de datos, aunque en el Instituto Tecnológico de Massachusetts, Jay Wright Forrester (Nacido en 1918) incursiona en el desarrollo de memorias de acceso aleatorio mediante núcleos de ferrita, y se comienzan a utilizar unidades de cinta magnética. En noviembre de 1947 John Bardeen (1908-1991), Walter H. Brattain (1902-1987) y William Bradford Shockley (1910-1989) diseñan en los Laboratorios Bell el primer transistor , y en 1954 se fabrican los primeros transistores de silicio Figura . Sin embargo, consideramos el año 1955 como el inicio de la segunda generación de computadoras, porque es cuando se aplican estos semiconductores a la construcción de las computadoras.
primer transistor base de germanio y punta de oro

El invento del transistor hizo posible una nueva generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.Los programas de computadoras también mejoraron. El COBOL (COmmon Busines Oriented Languaje) desarrollado durante la 1era generación estaba ya disponible comercialmente, este representa uno de los mas grandes avances en cuanto a portabilidad de programas entre diferentes computadoras; es decir, es uno de los primeros programas que se pueden ejecutar en diversos equipos de computo después de un sencillo procesamiento de compilación. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. Grace Murria Hooper (1906-1992), quien en 1952 habia inventado el primer compilador fue una de las principales figuras de CODASYL (Comité on Data SYstems Languages), que se encago de desarrollar el proyecto COBOL. El escribir un programa ya no requería entender plenamente el hardware de la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
Algunas de las computadoras que se construyeron ya con transistores fueron la IBM 1401, las Honeywell 800 y su serie 5000, UNIVAC M460, las IBM 7090 y 7094, NCR 315, las RCA 501 y 601, Control Data Corporation con su conocido modelo CDC16O4, y muchas otras, que constituían un mercado de gran competencia, en rápido crecimiento. En esta generación se construyen las supercomputadoras Remington Rand UNIVAC LARC, e IBM Stretch (1961).





Características de está generación:






  • Usaban transistores para procesar información.
  • Los transistores eran más rápidos, pequeños y más confiables que los tubos al vacío.
  • 200 transistores podían acomodarse en la misma cantidad de espacio que un tubo al vacío.
  • Usaban pequeños anillos magnéticos para almacenar información e instrucciones. cantidad de calor y eran sumamente lentas.
  • Se mejoraron los programas de computadoras que fueron desarrollados durante la primera generación.
  • Se desarrollaron nuevos lenguajes de programación como COBOL y FORTRAN, los cuales eran comercialmente accsesibles.
  • Se usaban en aplicaciones de sistemas de reservaciones de líneas aéreas, control del tráfico aéreo y simulaciones de propósito general.
  • La marina de los Estados Unidos desarrolla el primer simulador de vuelo, "Whirlwind I".
  • Surgieron las minicomputadoras y los terminales a distancia.
  • Se comenzó a disminuir el tamaño de las computadoras.





  • TERCERA GENERACIÓN 1964-1971
    A finales de los años 1950 se produjo la invención del circuito integrado o microchip, por parte de Jack St. Claire Kilby y Robert Noyce. Después llevó a Ted Hoff a la invención delmicroprocesador, en Intel. A finales de 1960, investigadores como George Gamow en el ADN formaban un código, otra forma de codificar o programar.
    A partir de esta fecha, empezaron a empaquetarse varios transistores diminutos y otros componentes electrónicos en un solo chip o encapsulado, que contenía en su interior un circuito completo: un amplificador, un oscilador, o una puerta lógica. Naturalmente, con estos chips (circuitos integrados) era mucho más fácil montar aparatos complicados: receptores de radio otelevisión y computadoras.
    En 1965, IBM anunció el primer grupo de máquinas construidas con circuitos integrados, que recibió el nombre de serie Edgar.
    Estas computadoras de tercera generación sustituyeron totalmente a los de segunda, introduciendo una forma de programar que aún se mantiene en las grandes computadoras actuales.
    Esto es lo que ocurrió en (1964-1971) que comprende de la tercera generación de computadoras.
    • Menor consumo de energía eléctrica
    • Apreciable reducción del espacio que ocupaba el aparato
    • Aumento de fiabilidad y flexibilidad
    • Teleproceso
    • Multiprogramación
    • Renovación de periféricos
    • Minicomputadoras, no tan costosas y con gran capacidad de procesamiento. Algunas de las más populares fueron la PDP-8 y la PDP-11
    • Se calculó π (Número Pi) con 500 mil decimales
    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.
    El descubrimiento en 1958 del primer Circuito Integrado (Chip) por el ingeniero Jack S. Kilby (nacido en 1928) de Texas Instruments, así como los trabajos que realizaba, por su parte, el Dr. Robert Noyce de Fairchild Semicon ductors, acerca de los circuitos integrados, dieron origen a la tercera generación de computadoras.
    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.
    IBM marca el inicio de esta generación, cuando el 7 de abril de 1964 presenta la impresionante IBM 360, con su tecnología SLT (Solid Logic Technology). Esta máquina causó tal impacto en el mundo de la computación que se fabricaron más de
    30000, al grado que IBM llegó a conocerse como sinónimo de computación.
    También en ese año, Control Data Corporation presenta la supercomputadora CDC 6600, que se consideró como la más poderosa de las computadoras de la época, ya que tenía la capacidad de ejecutar unos 3 000 000 de instrucciones por segundo (mips).
    Se empiezan a utilizar los medios magnéticos de almacenamiento, como cintas magnéticas de 9 canales, enormes discos rígidos, etc. Algunos sistemas todavía usan las tarjetas perforadas para la entrada de datos, pero las lectoras de tarjetas ya alcanzan velocidades respetables.
    Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).
    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron sumador auge entre 1960 y 70.
    Características de está generación:





  • Se desarrollaron circuitos integrados para procesar información.
  • Se desarrollaron los "chips" para almacenar y procesar la información. Un "chip" es una pieza de silicio que contiene los componentes electrónicos en miniatura llamados semiconductores.
  • Los circuitos integrados recuerdan los datos, ya que almacenan la información como cargas eléctricas.
  • Surge la multiprogramación.
  • Las computadoras pueden llevar a cabo ambas tareas de procesamiento o análisis matemáticos.
  • Emerge la industria del "software".
  • Se desarrollan las minicomputadoras IBM 360 y DEC PDP-1.
  • Otra vez las computadoras se tornan más pequeñas, más ligeras y más eficientes.
  • Consumían menos electricidad, por lo tanto, generaban menos calor.




  •           
                 CUARTA GENERACIÓN  1971-1981
    La denominada Cuarta Generación (1971 a 1981) es el producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador de chips hizo posible la creación de las computadoras personales (PC). Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo. Hicieron su gran debut las microcomputadoras.
    Hizo que sea una computadora ideal para uso “personal”, de ahí que el término “PC” se estandarizara y los clones que sacaron posteriormente otras empresas fueron llamados “PC y compatibles”, usando procesadores del mismo tipo que las IBM , pero a un costo menor y pudiendo ejecutar el mismo tipo de programas. Existen otros tipos de microcomputadoras , como la Macintosh, que no son compatibles con la IBM, pero que en muchos de los casos se les llaman también “PC”, por ser de uso personal. El primer microprocesador fue el Intel 4004, producido en 1971. Se desarrolló originalmente para una calculadora, y resultaba revolucionario para su época. Contenía 2.300 transistores en un microprocesador de 4 bits que sólo podía realizar 60.000 operaciones por segundo.El primer microprocesador de 8 bits fue el Intel 8008, desarrollado en 1972 para su empleo en terminales informáticos.1 El Intel 8008 contenía 3.300 transistores. El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4.500 transistores y podía ejecutar 200.000 instrucciones por segundo. Los microprocesadores modernos tienen una capacidad y velocidad mucho mayores.
    Entre ellos figuran el Intel Pentium Pro, con 5,5 millones de transistores; el UltraSparc-II, de Sun Microsystems, que contiene 5,4 millones de transistores; el PowerPC 620, desarrollado conjuntamente por Apple, IBM y Motorola, con 7 millones de transistores, y el Alpha 21164A, de Digital Equipment Corporation, con 9,3 millones de transistores. El Microprocesador, es un circuito electrónico que actúa como unidad central de proceso de un ordenador, proporcionando el control de las operaciones de cálculo.
    RORO y su microprocesadores también se utilizan en otros sistemas informáticos avanzados, como impresoras, automóviles o aviones. En 1995 se produjeron unos 4.000 millones de microprocesadores en todo el mundo. El microprocesador es un tipo de circuito sumamente integrado. Los circuitos integrados, también conocidos como microchips o chips, son circuitos electrónicos complejos formados por componentes extremadamente pequeños formados en una única pieza plana de poco espesor de un material conocido como semiconductor.
    Los microprocesadores modernos incorporan hasta 10 millones de transistores (que actúan como amplificadores electrónicos, osciladores o, más a menudo, como conmutadores), además de otros componentes como resistencias, diodos, condensadores y conexiones, todo ello en una superficie comparable a la de un sello postal. Un microprocesador consta de varias secciones diferentes. es más complejos contienen a menudo otras secciones; por ejemplo, secciones de memoria especializada denominadas memoria caché, modernos funcionan con una anchura de bus de 64 bits: esto significa que pueden transmitirse simultáneamente 64 bits de datos. Un cristal oscilante situado en el ordenador proporciona una señal de sincronización, o señal de reloj, para coordinar todas las actividades del microprocesador.Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC) En 1971, intel Corporation, que era una pequeña compañía fabricante de semiconductores ubicada en Silicon Valley, presenta el primer microprocesador o Chip de 4 bits, que en un espacio de aproximadamente 4 x 5 mm contenía 2250 transistores. Este primer microprocesador que se muestra en la figura 1.14, fue bautizado como el 4004.
    Silicon Valley (Valle del Silicio) era una región agrícola al sur de la bahía de San Francisco, que por su gran producción de silicio, a partir de 1960 se convierte en una zona totalmente industrializada donde se asienta una gran cantidad de empresas fabricantes de semiconductores y microprocesadores. Actualmente es conocida en todo el mundo como la región más importante para las industrias relativas a la computación: creación de programas y fabricación de componentes.
    Actualmente ha surgido una enorme cantidad de fabricantes de microcomputadoras o computadoras personales, que utilizando diferentes estructuras o arquitecturas se pelean literalmente por el mercado de la computación, el cual ha llegado a crecer tanto que es uno de los más grandes a nivel mundial; sobre todo, a partir de 1990, cuando se logran sorprendentes avances en Internet.
    Esta generación de computadoras se caracterizó por grandes avances tecnológicos realizados en un tiempo muy corto. En 1977 aparecen las primeras microcomputadoras, entre las cuales, las más famosas fueron las fabricadas por Apple Computer, Radio Shack y Commodore Busíness Machines. IBM se integra al mercado de las microcomputadoras con su Personal Computer (figura 1.15), de donde les ha quedado como sinónimo el nombre de PC, y lo más importante; se incluye un sistema operativo estandarizado, el MS- DOS (MicroSoft Disk Operating System).
    Las principales tecnologías que dominan este mercado son:
    IBM y sus compatibles llamadas clones, fabricadas por infinidad de compañías con base en los procesadores 8088, 8086, 80286, 80386, 80486, 80586 o Pentium, Pentium II, Pentium III y Celeron de Intel y en segundo término Apple Computer, con sus Macintosh y las Power Macintosh, que tienen gran capacidad de generación de gráficos y sonidos gracias a sus poderosos procesadores Motorola serie 68000 y PowerPC, respectivamente. Este último microprocesador ha sido fabricado utilizando la tecnología RISC (Reduced Instruc tion Set Computing), por Apple Computer Inc., Motorola Inc. e IBM Corporation, conjuntamente.
    Los sistemas operativos han alcanzado un notable desarrollo, sobre todo por la posibilidad de generar gráficos a gran des velocidades, lo cual permite utilizar las interfaces gráficas de usuario (Graphic User Interface, GUI), que son pantallas con ventanas, iconos (figuras) y menús desplegables que facilitan las tareas de comunicación entre el usuario y la computadora, tales como la selección de comandos del sistema operativo para realizar operaciones de copiado o formato con una simple pulsación de cualquier botón del ratón (mouse) sobre uno de los iconos o menús.
    Características de está generación:




  • Se desarrolló el microprocesador.
  • Se colocan más circuitos dentro de un "chip".
  • "LSI - Large Scale Integration circuit".
  • "VLSI - Very Large Scale Integration circuit".
  • Cada "chip" puede hacer diferentes tareas.
  • Un "chip" sencillo actualmente contiene la unidad de control y la unidad de aritmética/lógica. El tercer componente, la memoria primaria, es operado por otros "chips".
  • Se reemplaza la memoria de anillos magnéticos por la memoria de "chips" de silicio.
  • Se desarrollan las microcomputadoras, o sea, computadoras personales o PC.
  • Se desarrollan las supercomputadoras.

  •           


                            QUINTA GENERACIÓN 1982-1989

    Cada vez se hace más difícil la identificación de las generaciones de computadoras, porque los grandes avances y nuevos descubrimientos ya no nos sorprenden como sucedió a mediados del siglo XX. Hay quienes consideran que la cuarta y quinta generación han terminado, y las ubican entre los años 1971-1984 la cuarta, y entre 1984-1990 la quinta. Ellos consideran que la sexta generación está en desarrollo desde 1990 hasta la fecha.
    Siguiendo la pista a los acontecimientos tecnológicos en materia de computación e informática, podemos puntualizar algunas fechas y características de lo que podría ser la quinta generación de computadoras.
    Con base en los grandes acontecimientos tecnológicos en materia de microelectrónica y computación (software) como CADI CAM, CAE, CASE, inteligencia artificial, sistemas expertos, redes neuronales, teoría del caos, algoritmos genéticos, fibras ópticas, telecomunicaciones, etc., a de la década de los años ochenta se establecieron las bases de lo que se puede conocer como quinta generación de computadoras.
    Hay que mencionar dos grandes avances tecnológicos, que sirvan como parámetro para el inicio de dicha generación: la creación en 1982 de la primera supercomputadora con capacidad de proceso paralelo, diseñada por Seymouy Cray, quien ya experimentaba desde 1968 con supercomputadoras, y que funda en 1976 la Cray Research Inc.; y el anuncio por parte del gobierno japonés del proyecto "quinta generación", que según se estableció en el acuerdo con seis de las más grandes empresas japonesas de computación, debería terminar en 1992.
    El proceso paralelo es aquél que se lleva a cabo en computadoras que tienen la capacidad de trabajar simultáneamente con varios microprocesadores. Aunque en teoría el trabajo con varios microprocesadores debería ser mucho más rápido, es necesario llevar a cabo una programación especial que permita asignar diferentes tareas de un mismo proceso a los diversos microprocesadores que intervienen.
    También se debe adecuar la memoria para que pueda atender los requerimientos de los procesadores al mismo tiempo. Para solucionar este problema se tuvieron que diseñar módulos de memoria compartida capaces de asignar áreas de caché para cada procesador.
    Según este proyecto, al que se sumaron los países tecnológicamente más avanzados para no quedar atrás de Japón, la característica principal sería la aplicación de la inteligencia artificial (Al, Artificial Intelligence). Las computadoras de esta generación contienen una gran cantidad de microprocesadores trabajando en paralelo y pueden reconocer voz e imágenes. También tienen la capacidad de comunicarse con un lenguaje natural e irán adquiriendo la habilidad para tomar decisiones con base en procesos de aprendizaje fundamentados en sistemas expertos e inteligencia artificial.

     El almacenamiento de información se realiza en dispositivos magneto ópticos con capacidades de decenas de Gigabytes; se establece el DVD (Digital Video Disk o Digital Versatile Disk) como estándar para el almacenamiento de video y sonido; la capacidad de almacenamiento de datos crece de manera exponencial posibilitando guardar más información en una de estas unidades, que toda la que había en la Biblioteca de Alejandría. Los componentes de los microprocesadores actuales utilizan tecnologías de alta y ultra integración, denominadas VLSI (Very Large Sca/e Integration) y ULSI (Ultra Lar- ge Scale Integration).
    Sin embargo, independientemente de estos "milagros" de la tecnología moderna, no se distingue la brecha donde finaliza la quinta y comienza la sexta generación. Personalmente, no hemos visto la realización cabal de lo expuesto en el proyecto japonés debido al fracaso, quizás momentáneo, de la inteligencia artificial.
    El único pronóstico que se ha venido realizando sin interrupciones en el transcurso de esta generación, es la conectividad entre computadoras, que a partir de 1994, con el advenimiento de la red Internet y del World Wide Web, ha adquirido una importancia vital en las grandes, medianas y pequeñas empresas y, entre los usuarios particulares de computadoras.

      El propósito de la Inteligencia Artificial es equipar a las Computadoras con "Inteligencia Humana" y con la capacidad de razonar para encontrar soluciones.  Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones.   


                           VÍDEO: QUINTA GENERACION DE LAS COMPUTADORAS

            
          SEXTA GENERACIÓN 1990 HASTA LA FECHA
    Como supuestamente la sexta generación de computadoras está en marcha desde principios de los años noventas, debemos por lo menos, esbozar las características que deben tener las computadoras de esta generación. También se mencionan algunos de los avances tecnológicos de la última década del siglo XX y lo que se espera lograr en el siglo XXI. Las computadoras de esta generación cuentan con arquitecturas combinadas Paralelo / Vectorial, con cientos de microprocesadores vectoriales trabajando al mismo tiempo; se han creado computadoras capaces de realizar más de un millón de millones de operaciones aritméticas de punto flotante por segundo (teraflops); las redes de área mundial (Wide Area Network, WAN) seguirán creciendo desorbitadamente utilizando medios de comunicación a través de fibras ópticas y satélites, con anchos de banda impresionantes. Las tecnologías de esta generación ya han sido desarrolla das o están en ese proceso. Algunas de ellas son: inteligencia / artificial distribuida; teoría del caos, sistemas difusos, holografía, transistores ópticos, etcétera.






    Características de está generación:




  • Se desarrolló el microprocesador.
  • Se colocan más circuitos dentro de un "chip".
  • "LSI - Large Scale Integration circuit".
  • "VLSI - Very Large Scale Integration circuit".
  • Cada "chip" puede hacer diferentes tareas.
  • Un "chip" sencillo actualmente contiene la unidad de control y la unidad de aritmética/lógica. El tercer componente, la memoria primaria, es operado por otros "chips".
  • Se reemplaza la memoria de anillos magnéticos por la memoria de "chips" de silicio.
  • Se desarrollan las microcomputadoras, o sea, computadoras personales o PC.
  • Se desarrollan las supercomputadoras.

  • ALGUNOS OTROS ANTECEDENTES DE LAS COMPUTADORAS. 
    1. El Abaco
    Quizás fue el primer dispositivo mecánico de contabilidad que existió. Se ha calculado que tuvo su origen hace al menos 5000 años y su efectividad ha soportado la prueba del tiempo.
    2. La Pascalina
    El inventor y pintor Leonardo Da Vinci (1452-1519) trazó las ideas para una sumadora mecánica. Siglo y medio después, el filósofo y matemático francés Blas Pascal (1623-1662) inventó y construyó la primera sumadora mecánica. Se le llamo Pascalina y funcionaba como maquinaria a base de engranes y ruedas. A pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina, resultó un desconsolador fallo financiero, pues para esos momentos, resultaba más costosa que la labor humana para los cálculos aritméticos.
    3. Historia de la computadora
    La primera máquina de calcular mecánica, un precursor del ordenador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en Las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.
    El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidosmediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
    4. La máquina analítica
    También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.
    5. Primeros ordenadores
    Los ordenadores analógicos comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.
    Ordenadores electrónicos
    Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y conindependencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU) Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico digital electrónico (ENIAC) en 1945. El ENIAC, que según mostró la evidencia se basaba en gran medida en el ‘ordenador’ Atanasoff-Berry (ABC, acrónimo de Electronic Numerical Integrator and Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde.
    El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador.
    A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.
    6. Circuitos integrados
    A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.
    7. Generaciones De La Computadora
    Teniendo en cuenta las diferentes etapas de desarrollo que tuvieron las computadoras, se consideran las siguientes divisiones como generaciones aisladas con características propias de cada una, las cuáles se enuncian a continuación.
    Primera Generación
    Sistemas constituidos por tubos de vacío, desprendían bastante calor y tenían una vida relativamente corta. Máquinas grandes y pesadas. Se construye el ordenador ENIAC de grandes dimensiones (30 toneladas)
    Almacenamiento de la información en tambor magnético interior.
    Un tambor magnético disponía de su interior del ordenador, recogía y memorizaba los datos y los programas que se le suministraban.
    Programación en lenguaje máquina, consistía en largas cadenas de bits, de ceros y unos, por lo que la programación resultaba larga y compleja.
    Alto costo.
    Uso de tarjetas perforadas para suministrar datos y los programas.
    Segunda Generación
    Transistores
    Cuando los tubos de vacío eran sustituidos por los transistores, estas últimas eran más económicas, más pequeñas que las válvulas miniaturizadas consumían menos y producían menos calor. Por todos estos motivos, la densidad del circuito podía ser aumentada sensiblemente, lo que quería decir que los componentes podían colocarse mucho más cerca unos a otros y ahorrar mucho más espacio.
    Tercera Generación
    Circuito integrado (chips)
    Aumenta la capacidad de almacenamiento y se reduce el tiempo de respuesta.
    Generalización de lenguajes de programación de alto nivel. Compatibilidad para compartir software entre diversos equipos.
    Cuarta Generación
    Microcircuito integrado
    El microprocesador: el proceso de reducción del tamaño de los componentes llega a operar a escalas microscópicas. La microminiaturización permite construir el microprocesador, circuito integrado que rige las funciones fundamentales del ordenador.
    Quinta Generación Y La Inteligencia Artificial
    El propósito de la Inteligencia Artificial es equipar a las Computadoras con "Inteligencia Humana" y con la capacidad de razonar para encontrar soluciones. Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones. El conocimiento recién adquirido le servirá como base para la próxima serie de soluciones.
    8. Pioneros de la computación
    Atanasoff Y Berry
    Una antigua patente de un dispositivo que mucha gente creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dio el crédito a John V. Atanasoff como el inventor de la computadora digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Computer) Un estudiante graduado, Clifford Berry, fue una útil ayuda en la construcción de la computadora ABC.
    Algunos autores consideran que no hay una sola persona a la que se le pueda atribuir el haber inventado la computadora, sino que fue el esfuerzo de muchas personas. Sin embargo en el antiguo edificio de Física de la Universidad de Iowa aparece una placa con la siguiente leyenda: "La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en 1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física."
    Pascal
    Fue el primero en diseñar y construir una máquina sumadora. Quería ayudar a su padre, quien era cobrador de impuestos, con los cálculos aritméticos. La máquina era mecánica y tenía un sistema de engranes cada uno con 10 dientes; en cada diente había grabado un dígito entre el 0 y el 9. Así para representar un número, el engrane del extremo derecho se movía hasta tener el dígito de las unidades, el engrane que le seguía a la izquierda tenía el dígito de las decenas, el siguiente el de las centenas y así sucesivamente. Los números se representaban en la máquina como nosotros lo hacemos en notación decimal.
    Para realizar una suma o una resta, se activaba el sistema de engranes que hacía girar cada uno de ellos. Comenzaba por el extremo derecho y seguía, uno por uno, hacia la izquierda. Cuando la suma en un engrane excedía el número 9, automáticamente el engrane inmediato a la izquierda se movía un décimo de vuelta aumentando en 1 la cantidad que representaba. Así Blaise Pascal logró resolver el problema del acarreo de dígitos para las máquinas sumadoras y obtuvo una máquina que podía sumar cualquier par de números.
    Charles Babagge
    Sus máquinas y su legado
    El Babbage del que todo mundo ha leído es, sin embargo, el inventor fracasado que se pasó toda su vida intentando construir la primera computadora de uso general de la historia y que, pese a haber fracasado, hizo aportaciones muy significativas al desarrollo de la informática.
    Muchas son las visiones románticas y hasta un tanto fantasiosas que se han escrito sobre la vida de Babbage. Mucho es lo que se ha dicho sobre sus "maravillosas máquinas", pero también mucha es la confusión que se ha desarrollado en torno a sus verdaderas aportaciones y a las razones por las que nunca pudo completar la construcción de las mismas.
    Wilkes nos ofrece quizá una de las visiones menos apasionadas del genio de Babbage, y nos hace ver que realmente la primera máquina que Babbage intentaba construir, llamada Máquina Diferencial (Difference Engine) sólo era capaz de tabular polinomios, y que requería, de cualquier manera, bastante trabajo con lápiz y papel. La idea no era realmente tan buena como Babbage pensaba, pero él nunca lo hubiera admitido. Sin embargo, este proyecto tuvo un impacto muy importante en la investigación aplicada en Inglaterra, pues el gobierno británico decidió financiarlo con una fuerte suma de dinero, en su afán de perfeccionar la impresión de las tablas de navegación, tan comunes en aquella época. Joseph Clement, tal vez el mejor fabricante de herramientas del Reino Unido, fue asignado para trabajar con Babbage en el diseño de esta máquina. Sin embargo, tras una fuerte disputa Babbage acabó quedándose solo y sin un centavo de las £34,000 que invirtió en el proyecto después de 10 años de intenso trabajo. Se ha especulado que la máquina nunca se construyó porque todavía no se contaba con la tecnología necesaria, pero eso no parece ser cierto, dado que Georg y Edvard Scheutz, dos ingenieros Suecos que leyeron un artículo sobre la máquina de Babbage, fueron capaces de construir una Máquina Diferencial unos 10 años después de que el proyecto original se abandonara. La máquina funcionó y fue vendida al Observatorio Dudley en Nueva York, aunque se dice que nunca lo hizo muy bien y por ello pronto cayó en desuso. Una réplica de esta máquina se conserva en la oficina del Censo de Londres.
    Realmente, la aportación clave de Babbage a la computación moderna vino con su siguiente máquina: La Máquina Analítica (Analytical Engine), el cual, de haberse construido, habría sido efectivamente la primera computadora de uso general de la historia. Babbage empezó a trabajar en este nuevo proyecto en 1834, pese a su fracaso con su máquina anterior, y continuó haciéndolo durante toda su vida. Su modelo fue refinado muchas veces, y a lo largo de este proceso, Babbage tuvo muchas ideas visionarias sobre las computadoras. Por ejemplo, sugirió el uso de tarjetas perforadas para controlar su máquina, y anticipó el uso de las mismas para representar un algoritmo e incluso inventó el concepto de bucles o ciclos en programación. También anticipó el uso de microprogramación, aunque dejó huecos importantes en su trabajo, y falló en anticipar cuestiones tan obvias hoy en día como es el uso de variables en un programa. Todo este trabajo, habría permanecido prácticamente desconocido por años de no haber sido por Ada, Condesa de Lovelace, la hija del famoso poeta Lord Byron, de quien hablaremos la próxima ocasión, que se dio a la tarea de difundir las ideas de Babbage sobre su máquina. Se ha llegado a decir sobre la Máquina Analítica, que sería injusto afirmar que Babbage fracasó también en su intento por construirla, pues nunca intentó realmente hacerlo, sabedor de que resultaría prácticamente imposible volver a conseguir fondos para financiar tal proyecto. Sin embargo, sus planos y notas fueron tan detallados que en 1991 el Museo Nacional de Ciencia y Tecnología de Londres construyó una máquina basándose en ellos y usando sólo materiales y herramientas disponibles en la época de Babbage. La máquina ha funcionado desde entonces, sin ningún problema. ¿Por qué no pudo entonces Babbage lograr fructificar su sueño? La respuesta sigue siendo un misterio. Hay quienes dicen que le faltó habilidad política para negociar con el gobierno, pero la verdad es que después de haberse gastado una fortuna y no recibir nada a cambio, creo que el gobierno de cualquier país se mostraría reacio a seguir invirtiendo en el mismo proyecto. Tal vez la verdadera razón haya sido la naturaleza idealista de Babbage que le impedía materializar muchas de sus maravillosas visiones, a la luz de su obsesión por lo perfecto.
    Babbage nunca tuvo miedo a ser olvidado ni se sintió decepcionado por la indiferencia que sus contemporáneos mostraron por su trabajo. Cerca del final de su vida escribió: "No tengo miedo de dejar mi reputación a cargo de aquel que tenga éxito construyendo mi Máquina Analítica, porque él y sólo él será capaz de apreciar totalmente la naturaleza de mi esfuerzo y el valor de sus resultados". Nada más cierto que eso, puesto que a pesar de que Charles Babbage murió en total soledad la mañana del 18 de octubre de 1871 a sólo 2 meses de volverse un octogenario, sus aportaciones serían realmente apreciadas sólo hasta que las primeras computadoras digitales fueron construidas, a mediados del presente siglo. Sus experimentos dejarían huella profunda en el trabajo sobre autómatas del español Leonardo Torres de Quevedo a principios de este siglo; posiblemente la idea de Herman Hollerith de usar tarjetas perforadas fue derivada por la sugerencia de Babbage, y se ha llegado a especular que la Máquina Analítica pudo haber sido incluso la fuente principal de inspiración del modelo teórico de la computadora moderna desarrollado por el matemático Alan Turing y que hoy se conoce como "máquina de Turing". Con tan convincente evidencia de la importancia de sus ideas tal vez no importe tanto que Babbage no haya logrado construir sus máquinas después de todo, pues sus aportaciones resultaron igualmente significativas de cualquier forma.
    Se sabe que Babbage nunca recibió remuneración alguna por su trabajo de 10 años en la Máquina Diferencial, por lo que el Parlamento Inglés decidió ofrecerle un título de nobleza a cambio (le ofrecieron el título de Barón) Babbage rehusó aceptarlo, pidiendo mejor una pensión vitalicia que nunca le fue concedida. ¿Un error de apreciación? No realmente, si consideramos que lo que realmente recibió a cambió del trabajo de toda una vida fue algo más valioso que cualquier título de nobleza: un sitio privilegiado en la historia de la informática, el de padre de la computación moderna.
    Gottfried Wihelm Leibniz
    Demostró las ventajas de utilizar el sistema binario en lugar del decimal en las computadoras mecánicas.
    Inventó y construyó una máquina aritmética que realizaba las cuatro operaciones básicas y calculaba raíces cuadradas.
    Nació el 1 de julio de 1646 en Leipzig, Sajonia (ahora Alemania)
    Murió el 14 de noviembre de 1716 en Hannover, Hannover (ahora Alemania)
    Leibniz ha sido uno de los más grandes matemáticos de la historia, se le reconoce como uno de los creadores del Cálculo Diferencial e Integral; pero fue un hombre universal que trabajó en varias disciplinas: lógica, mecánica, geologíajurisprudencia, historia, lingüística y teología.
    Inventó una máquina aritmética que empezó a diseñar en 1671 y terminó de construir en 1694; era una máquina mucho más avanzada que la que había inventado Pascal y a la que llamó "calculadora secuencial o por pasos", en alemán: "dice Getrocknetsrechenmaschine". La máquina no sólo sumaba y restaba, sino que además podía multiplicar, dividir y sacar raíz cuadrada. Sin embargo, en esa época el desarrollo de la técnica no se encontraba en condiciones de producir en serie las piezas de gran precisión indispensables para el funcionamiento de la máquina.
    El modelo que construyó Leibniz nunca funcionó correctamente; sin embargo, en 1794 se construyó un modelo funcional de la calculadora de Leibniz que actualmente se exhibe en la Real Sociedad de Londres. Esta última máquina tampoco resultó confiable y no fue sino hasta 1820 cuando se fabricó un aparato infalible y comercial capaz de realizar las cuatro operaciones aritméticas fundamentales.
    John Von Neumann : un genio incomparable
    Su interés por la computación
    Con el advenimiento de la Segunda Guerra Mundial, von Neumann hubo de abandonar sus estudios en matemáticas puras, y concentrarse en problemas más prácticos para servir al Gobierno del que ahora era nacional. Fue consultor en proyectos de balística, en ondas de detonación, y eventualmente, se involucró en el desarrollo de la bomba atómica, en donde demostró la factibilidad de la técnica de implosión que más tarde se usaría en la bomba que detonó en Nagasaki. Sin embargo, debido a su valía como consultor en otras agencias gubernamentales ligadas a la guerra, von Neumann fue uno de los pocos científicos a quien no se le requirió permanecer de tiempo completo en Los Álamos. Fue precisamente durante la primera mitad de 1943, en plena guerra, que se interesó por primera vez en la computación. Tras un viaje a Inglaterra, le dijo a Voblen que creía sumamente importante que se utilizaran máquinas para acelerar los complejos cálculos involucrados con su trabajo. Aunque comenzaron a utilizar equipo de IBM, éste no satisfizo las necesidades del Proyecto Manhattan, y von Neumann empezó pronto a buscar opciones en otros lados. En 1944 sólo había unos pocos proyectos para desarrollar computadoras en los Estados Unidos: Howard Aiken en Harvard, George Stibitz en Laboratorios Bell, Jan Schilt en la Universidad Columbia, y Presper Eckert y John W. Mauchly, en la Universidad de Pennsylvania. Aunque von Neumann contactó a los 3 primeros científicos y estuvo en contacto con sus máquinas, la única computadora con la que realmente se involucró a fondo fue la última, llamada ENIAC (Electronic Numerical Integrator and Computer), que durante mucho tiempo fue ignorada por la comunidad científica, y que con el apoyo de von Neumann fue finalmente tomada en serio hasta convertirse en un proyecto de primera línea. Curiosamente, la ENIAC tenía una arquitectura en paralelo, aunque casi carecía de memoria (sólo podía almacenar 20 palabras), y otra máquina más ambiciosa, llamada EDVAC (Electronic Discrete Variable Arithmetic Computer) nació del deseo de sus diseñadores de construir una máquina "más útil" que operara en serie. Desgraciadamente, la reputación de von Neumann tenía también su lado negativo, y debido a una indiscreción a la prensa y al hecho de que firmó como autor único un borrador del EDVAC, el proyecto no sólo perdió su status de secreto, sino que se volvió objeto de una enorme controversia, pues Mauchly y Eckert no sólo se disgustaron mucho por no haber recibido el crédito debido, sino que fueron despedidos de la Universidad de Pennsylvania ante su negativa de ceder a la institución los derechos del ENIAC. Este error le costó a la Universidad de Pennsylvania el perder su status de universidad de primer nivel en los Estados Unidos, y todavía hoy se recuerda a éste como uno de sus peores momentos históricos. Eventualmente, la guerra terminó, el EDVAC se volvió del dominio público, Mauchly y Eckert fundaron su propia empresa y von Neumann regresó a Princeton con el sueño de construir su propia máquina.
    Sus Últimos Años
    Debido a los tropiezos que tuvo inicialmente para conseguir dinero para construir su computadora, varias universidades le ofrecieron trabajo a von Neumann después de la guerra, y aunque estuvo cerca de aceptar al menos una de estas ofertas, fue leal al IEA, y finalmente logró conseguir los fondos que necesitaba para su proyecto con ayuda de Princeton y la RCA. Su idea era construir una máquina similar a EDVAC pero más poderosa y más rápida. La computadora IAS fue eventualmente construida en los 50s, y su diseño ha servido como inspiración para la mayoría de las computadoras modernas, si bien la arquitectura que hoy recibe su nombre no fue realmente producto de su inventiva. Sus principales contribuciones en computación fueron: la noción del uso de monitores para visualizar datos, la invención del diagrama de flujo, la teoría de los autómatas celulares, incontables técnicas de cómputo matemático, fue co-autor de la teoría de juegos que dio pie al famoso método de Montecarlo, y fue co-autor del otrora famoso libro: "Cybernetics: Or Control and Communication in the Animal and the Machine" en el que explicaba junto con Norbert Wiener la manera en que los cerebros electrónicos podrían efectuar tareas humanas de diferentes grados de dificultad.
    En octubre de 1954 se volvió miembro de la Comisión de Energía Atómica, por lo que se tuvo que mudar junto con su esposa a Georgetown, en Washington, D.C. A la vez, sirvió como consultor para la IBM, en donde conoció a John Backus mientras desarrollaba el FORTRAN. Curiosamente, von Neumann desdeñó el trabajo de Backus pensando que nadie requeriría jamás usar un lenguaje de programación de más alto nivel que el lenguaje binario que él tan bien conocía. En el verano de ese mismo año, se lastimó el hombro izquierdo en una caída, y en la cirugía posterior se descubrió que tenía cáncer en los huesos. Pese a saberse cerca de la muerte, continuó con su tremendo ritmo de trabajo, y en sus últimos días el secretario de defensa, y los secretarios del ejército, la marina y la fuerza aérea norteamericanas, se daban cita alrededor de la cama de von Neumann en el hospital Water Reed en Washington, D.C. Sólo médicos y personalcon autorización militar podían verlo, ante el temor que revelara secretos importantes mientras estaba sedado. Para ese entonces, von Neumann había recibido un sinnúmero de doctorados Honoris Causa, la medalla presidencial al mérito, el premio Enrico Fermi y el premio Albert Einstein. Aunque nunca practicó en vida la religión Católica, bajo la cual fue bautizado por sus padres, al sentir cerca su fin pidió que un sacerdote le diera los sacramentos. Sus planes de irse a trabajar como profesor a la Universidad de California en Los Ángeles nunca se volverían realidad, porque el "mejor matemático del mundo", como lo llamara Herman H. Goldstine, falleció el 8 de febrero de 1957. Su leyenda, sin embargo, sigue viva hasta nuestros días en los corredores de Princeton y en una pléyade de libros alrededor del mundo.
    Ada Byron
    Ada Byron conoció a Charles Babbage en 1833, cuando ella tenía 18 años y el 42. Quedó tan impresionada por las ideas sobre las máquinas que Babbage inventaba que decidió estudiar matemáticas para poder ayudar a su amigo en lo que se refería a la rama teórica de sus inventos. Se convirtió, con el paso de los años, en una gran matemática y científica. Trabajó siempre muy cerca de Babbage en el diseño de máquinas computadoras y muy en particular en el diseño de la "máquina analítica". A propósito escribió:
    "La característica que distingue a la máquina analítica, es la inclusión en ella del principio que Jacquard concibió para regular la fabricación, mediante tarjetas perforadas, de los más complicados modelos de brocados. Al capacitar a los mecanismos para combinar entre sí símbolos generales en sucesiones de variedad y extensión ilimitadas, se establece un eslabón entre las operaciones materiales y los procesos mentales abstractos de la rama más teórica de la cienciamatemática. Se desarrolla un lenguaje nuevo, amplio y poderoso, para su empleo futuro en el análisis, cuyas verdades se podrán manejar de modo que su aplicación sea más práctica y precisa para la humanidad de lo que hasta ahora han hecho las medidas a nuestro alcance..."
    Ada Byron desarrolló de manera teórica el primer programa que la máquina analítica utilizó, pero su trabajo no se limitó a la parte científica; cuando el gobierno les retiro el apoyo financiero, Ada apostó en las carreras de caballos y empeñó todas sus joyas para obtener el dinero que se necesitaba en la construcción de la máquina.
    Herman Hollerith
    A los 19 años se graduó en la escuela de minería de la Universidad de Columbia y empezó a trabajar en la Oficina de Censos de los Estados Unidos. En 1880 se realizó el primer gran censo de ese país y la información se escribió en tarjetas extremadamente largas que debían acomodarse y contarse manualmente en las clasificaciones deseadas: edad, sexo, ocupación, etcétera, lo cual obligaba a que se reacomodaran y contaran varias veces.
    Hollerith se propuso desarrollar un método más práctico para manejar estos datos. En 1889 termino su "máquina tabuladora eléctrica" que lograba registrar datos en tarjetas perforadas. Gracias a este invento se lograban tabular de 50 a 75 tarjetas por minuto y conteos que manualmente se hubieran terminado en años, podían lograrse en pocos meses.
    Herman Hollerith fundó en 1896 la Compañía de Máquinas Tabuladoras para promover el uso comercial de su invento. Más tarde la compañía cambió al nombre de International Business Machine (IBM).
    Howard H. Aiken
    Construyó una computadora electromecánica programable siguiendo las ideas introducidas por Babbage
    A partir de 1939 Howard Aiken, de la Universidad de Harvard, en asociación con ingenieros de la compañía IBM, trabajó durante 5 años en la construcción de una computadora totalmente automática, la "Harvard Mark I" que medía 15 metros de largo por 2.4 de altura.
    Esta máquina se controlaba con tarjetas perforadas, podía realizar cinco operaciones fundamentales: suma, resta,
    multiplicación, división y consulta de tablas de referencia. Los datos entraban mediante tarjetas perforadas y salían a través de una máquina electrónica.
    Konrad Zuse
    Introdujo interruptores magnéticos, llamados relevadores eléctricos en las computadoras.
    Introdujo el control programado mediante cinta perforada lo que permitió automatizar el proceso de cálculo.
    Construyó la primera computadora electromecánica programable.
    Zuse continuó perfeccionando la computadora y en 1939 terminó una segunda versión a la que llamó Z2, dos años más tarde presentó la Z3, considerada por los expertos como la primera computadora totalmente programable. Esta computadora contenía en su procesador y en su memoria cerca de 2,600 relevadores que eran interruptores magnéticos que permitían introducir en las máquinas la representación binaria de los números.
    En 1941 Zuse y un amigo solicitaron al gobierno alemán un patrocinio para construir una computadora electrónica más rápida que utilizara tubos de vacío. Sin embargo la ayuda no les fue otorgada y la máquina se quedó en proyecto.
    Alan Mathison Turing
    Diseñó la primera computadora electrónica digital de bulbos.
    Turing fue un gran matemático, lógico y teórico de la computación. Cundo era estudiante de postgrado en la universidad de Princeton en 1936, publicó el artículo "On computable numbers", que estableció las bases teóricas para la computación moderna. En él describió lo que después se llamó la "Máquina de Turing": un dispositivo teórico que leía instrucciones de una cinta de papel perforada y ejecutaba todas las operaciones de una computadora. El artículo también fijó los límites de las ciencias de la computación al demostrar que existen problemas que ningún tipo de computadora podrá resolver.
    Después de doctorarse en 1938, Turing tuvo la oportunidad de poner sus teorías en práctica. Bajo su dirección se construyó "Colossus", una máquina cuyo propósito era descifrar el código secreto militar alemán y que fue terminada en 1943. En la actualidad se le considera la primera computadora digital electrónica.
    J. Presper Eckert y John W. Mauchly
     Construyeron la computadora electrónica más grande del mundo y utilizaron para ello 18,000 bulbos.
    J. Presper Eckert y John W. Mauchly, de la Universidad de Pennsylvania, inventaron y desarrollaron en 1946 la ENIAC, acrónimo de Electronic Numerical Integrator and Calculator. Fue la mayor computadora de bulbos construida para uso general. Cuando ENIAC funcionaba correctamente, la velocidad de cálculo era entre 500 y 1000 veces superior a las calculadoras electromecánicas de su tiempo, casi la velocidad de las calculadoras de bolsillo de hoy.
    Años más tarde Eckert y Mauchly construyeron la UNIVAC, la primera computadora que manejó información alfabética y numérica con igual facilidad.
    GRACIAS X HABER VISITADO MIL BLOG